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Visualizing High-Dimensional Vectors

The next two examples are drawn from:
http://setosa.io/ev/principal-component-analysis/
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Using our earlier analysis:
ompare pairs of food items across locations
" (e.g., scatter plot of cheese vs cereals consumption
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Using our earlier analysis:
ompare pairs of food items across locations
" (e.g., scatter plot of cheese vs cereals consumption
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Using our earlier analysis:
ompare pairs of food items across locations
" (e.q., scatter plot of cheese vs cereals consumption
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Using our earlier analysis:
ompare pairs of food items across locations
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The issue Is that as humans
we can only really visualize
up to 3 dimensions easily

Goal: Somehow reduce the dimensionality of the data
poreferably to 1, 2, or 3



Principal Component Analysis (PCA)



Principal Component Analysis (PCA)

° Pretentious
Gene.rality

Monast
o Mongeley

Therefore Scoundrel

® Infectious

Across Insane

Arise
® 06 o

Solid B'.O'[

Number of letters of the word
- N W S O OO N OO © © —

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of lines of the definition

Herve Abdi and Lynne J. Williams. Principal component analysis. Wiley Interdisciplinary Reviews:
Computational Statistics. 2010.



Principal Component Analysis (PCA)

How to project 2D data down to 1D?
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Principal Component Analysis (PCA)

How to project 2D data down to 1D?









Prmmpal Component AnaIyS|s (PCA)

before
“flattening”

The idea of PCA actually works for 2D = 2D as well
(and just involves rotating, and not “flattening” the data)

2nd green axis chosen to be 90° (“orthogonal”) from first green axis
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Principal Component Analysis (PCA)

e Finds top k orthogonal directions that explain the most
variance in the data

e 1st component: explains most variance along 1
dimension

* 2nd component: explains most of remaining variance
along next dimension that is orthogonal to 1st
dimension

e “FHatten” data to the top k dimensions to get lower
dimensional representation (if k < original dimension)



Principal Component Analysis (PCA)

3D example from:
http://setosa.io/ev/principal-component-analysis/



Principal Component Analysis (PCA)

Demo



PCA reorients data so axes explain
variance in “decreasing order”
-> can “flatten” (project) data onto a
few axes that captures most variance






Image source: http://4.bp.blogspot.com/-USQEgoh1jCU/VincdNOETcl/AAAAAAAAGPS/
Hea8UtE_1c0/s1600/Blog%2B1%2BIMG_1821.jpg



2D Swiss Roll




2D Swiss Roll

PCA would just flatten this thing and
lose the information that the data actually
lives on a 1D line that has been curved!



PCA would squash down th|s Swiss
roll (like stepping on it from the top)
mixing the red & white parts

Image source: http://4.bp.blogspot.com/-USQEgoh1jCU/VincdNOETcl/AAAAAAAAGPS/
Hea8UtE_1c0/s1600/Blog%2B1%2BIMG_1821.jpg
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2D Swiss Roll

This is the desired result



3D Swiss Roll
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3D Swiss Roll

Goal: Low-dimensional representation where similar colored points
are near each other (we don’t actually get to see the colors)



Manifold Learning



Manifold Learning

* Nonlinear dimensionality reduction (in contrast to PCA
which is linear)



Manifold Learning

* Nonlinear dimensionality reduction (in contrast to PCA
which is linear)

e Fnd low-dimensional “manifold” that the data live on



Manifold Learning

* Nonlinear dimensionality reduction (in contrast to PCA
which is linear)

e Fnd low-dimensional “manifold” that the data live on




Manifold Learning

* Nonlinear dimensionality reduction (in contrast to PCA
which is linear)

e Fnd low-dimensional “manifold” that the data live on

Basic idea of a manifold:




Manifold Learning

* Nonlinear dimensionality reduction (in contrast to PCA
which is linear)

e Fnd low-dimensional “manifold” that the data live on

Basic idea of a manifold:

1. Zoom in on any point (say, x)




Manifold Learning

* Nonlinear dimensionality reduction (in contrast to PCA
which is linear)

e Fnd low-dimensional “manifold” that the data live on

Basic idea of a manifold:
1. Zoom in on any point (say, x)

2. The points near x look like
they’re in a lower-dimensional
Euclidean space
(e.g., a 2D plane in Swiss roll)
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Manifold Learning with Isomap

Step 1: For each point, find
ts nearest neighbors, and g

build a road (“edge”)

between them
& -® Step 2: Compute
shortest distance from
each point to every other
point where you’re only
allowed to travel on the
roads

Step 3: It turns out that given all the distances between pairs of
points, we can compute what the points should be
(the algorithm for this is called multidimensional scaling)
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IN . road lengths |
2 nearest neighbors of A: B, C
A E} c  2nearestneighbors of B: A, C
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= 2 nearest neighbors of E:

Build "symmetric 2-NN" graph
(add edges for each point to
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/-V

Shortest distances between
every point to every other
point where we are only
allowed to travel along the
roads

This matrlx gets fed mto
multidimensional scaling 1o get
1D version of A, B, C, D, E

The solution is not unique!
16 13 38 5 0
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Multidimensional scaling demo



3D Swiss Roll Example

Joshua B. Tenenbaum, Vin de Silva, John C. Langford. A Global Geometric
Framework for Nonlinear Dimensionality Reduction. Science 2000.
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Some Observations on Isomap

The quality of the result
0= critically depends on the
nearest neighbor graph

& -®
Ask for nearest neighbors to Allow for nearest neighbors
be really close by to be farther away
There might not be enough Might connect points that
edges shouldn’t be connected

In general: try different parameters for nearest neighbbor graph
construction when using Isomap + visualize



t-SNE
(t-distributed stochastic
neighbor embedding)
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e Keep improving low-dimensional representation to make the
following two distributions look as closely alike as possible
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Manifold Learning with t-SNE

Demo



Technical Detail for t-SNE

Fleshing out high level idea #1

Suppose there are n high-dimensional points x1, x2, ..., Xn

1xi—1°

For a specific point /, point / picks pointj (# /) to = exp( 2072 )
: : T JI = Xi—xr |2
be a neighbor with probability: Zk% exp( | =" I )

1

oi (depends on /) controls the probabillity in which point j would be picked by i
as a neighbor (think about when it gets close to O or when it explodes 1o )

oi is controlled by a knob called 'perplexity’
(rough intuition: it is like selecting small vs large neighborhoods for Isomap)

Pji + Pi|j
2N

Points / and j are "similar” with probability:  p;; =



Technical Detail for t-SNE

Fleshing out high level idea #2

Denote the n low-dimensional points as x1', x2', ..., Xn

1
1+ =72

Low-dim. points / and j are "similar® with probability: qi; = 1

2 ekotm T

Fleshing out high level idea #3

Use gradient descent (with respect to gi)) to minimize:

> piylog
i di,
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Dimensionality Reduction for Visualization

e There are many methods (I've posted a link on the course
webpage to a scikit-learn Swiss roll example using ~10
methods)

 PCA is very well-understood; the new axes can be interpreted

* Nonlinear dimensionality reduction: new axes may not really be
all that interpretable (you can scale axes, shift all points, etc)

* PCA and t-SNE are good candidates for methods to try first

e |f you have good reason to believe that only certain features
matter, of course you could restrict your analysis to those!



